数值的扩展
二进制和八进制表示法
ES6 提供了二进制和八进制数值的新的写法,分别用前缀 0b
(或 0B
) 和 0o
(或 0O
)表示。
0b111110111 === 503; // true
0o767 === 503; // true
从 ES5 开始,在严格模式之中,八进制就不再允许使用前缀 0
表示,ES6 进一步明确,要使用前缀 0o
表示。
// 非严格模式
(function () {
console.log(0o11 === 011);
})()(
// true
// 严格模式
function () {
"use strict";
console.log(0o11 === 011);
},
)(); // Uncaught SyntaxError: Octal literals are not allowed in strict mode.
如果要将 0b
和 0o
前缀的字符串数值转为十进制,要使用 Number
方法。
Number("0b111"); // 7
Number("0o10"); // 8
Number.isFinite(), Number.isNaN()
ES6 在 Number
对象上,新提供了 Number.isFinite()
和 Number.isNaN()
两个方法。
Number.isFinite()
用来检查一个数值是否为有限的(finite),即不是 Infinity
。
Number.isFinite(15); // true
Number.isFinite(0.8); // true
Number.isFinite(NaN); // false
Number.isFinite(Infinity); // false
Number.isFinite(-Infinity); // false
Number.isFinite("foo"); // false
Number.isFinite("15"); // false
Number.isFinite(true); // false
注意,如果参数类型不是数值,Number.isFinite
一律返回 false
。
Number.isNaN()
用来检查一个值是否为 NaN
。
Number.isNaN(NaN); // true
Number.isNaN(15); // false
Number.isNaN("15"); // false
Number.isNaN(true); // false
Number.isNaN(9 / NaN); // true
Number.isNaN("true" / 0); // true
Number.isNaN("true" / "true"); // true
如果参数类型不是 NaN
,Number.isNaN
一律返回 false
。
它们与传统的全局方法 isFinite()
和 isNaN()
的区别在于,传统方法先调用 Number()
将非数值的值转为数值,再进行判断,而这两个新方法只对数值有效,Number.isFinite()
对于非数值一律返回 false
, Number.isNaN()
只有对于 NaN
才返回 true
,非 NaN
一律返回 false
。
isFinite(25); // true
isFinite("25"); // true
Number.isFinite(25); // true
Number.isFinite("25"); // false
isNaN(NaN); // true
isNaN("NaN"); // true
Number.isNaN(NaN); // true
Number.isNaN("NaN"); // false
Number.isNaN(1); // false
Number.parseInt(), Number.parseFloat()
ES6 将全局方法 parseInt()
和 parseFloat()
,移植到 Number
对象上面,行为完全保持不变。
// ES5 的写法
parseInt("12.34"); // 12
parseFloat("123.45#"); // 123.45
// ES6 的写法
Number.parseInt("12.34"); // 12
Number.parseFloat("123.45#"); // 123.45
这样做的目的,是逐步减少全局性方法,使得语言逐步模块化。
Number.parseInt === parseInt; // true
Number.parseFloat === parseFloat; // true
Number.isInteger()
Number.isInteger()
用来判断一个数值是否为整数。
Number.isInteger(25); // true
Number.isInteger(25.1); // false
JavaScript 内部,整数和浮点数采用的是同样的储存方法,所以 25
和 25.0
被视为同一个值。
Number.isInteger(25); // true
Number.isInteger(25.0); // true
如果参数不是数值,Number.isInteger
返回 false
。
Number.isInteger(); // false
Number.isInteger(null); // false
Number.isInteger("15"); // false
Number.isInteger(true); // false
注意,由于 JavaScript 采用 IEEE 754 标准,数值存储为 64 位双精度格式,数值精度最多可以达到 53 个二进制位(1 个隐藏位与 52 个有效位)。如果数值的精度超过这个限度,第 54 位及后面的位就会被丢弃,这种情况下,Number.isInteger
可能会误判。
Number.isInteger(3.0000000000000002); // true
上面代码中,Number.isInteger
的参数明明不是整数,但是会返回 true
。原因就是这个小数的精度达到了小数点后 16 个十进制位,转成二进制位超过了 53 个二进制位,导致最后的那个 2
被丢弃了。
类似的情况还有,如果一个数值的绝对值小于 Number.MIN_VALUE
(5E-324),即小于 JavaScript 能够分辨的最小值,会被自动转为 0。这时,Number.isInteger
也会误判。
Number.isInteger(5e-324); // false
Number.isInteger(5e-325); // true
上面代码中,5E-325
由于值太小,会被自动转为 0,因此返回 true
。
总之,如果对数据精度的要求较高,不建议使用 Number.isInteger()
判断一个数值是否为整数。
Number.EPSILON
ES6 在 Number
对象上面,新增一个极小的常量 Number.EPSILON
。根据规格,它表示 1 与大于 1 的最小浮点数之间的差。
对于 64 位浮点数来说,大于 1 的最小浮点数相当于二进制的 1.00..001
,小数点后面有连续 51 个零。这个值减去 1 之后,就等于 2 的 -52 次方。
Number.EPSILON === Math.pow(2, -52);
// true
Number.EPSILON;
// 2.220446049250313e-16
Number.EPSILON.toFixed(20);
// "0.00000000000000022204"
Number.EPSILON
实际上是 JavaScript 能够表示的最小精度。误差如果小于这个值,就可以认为已经没有意义了,即不存在误差了。
引入一个这么小的量的目的,在于为浮点数计算,设置一个误差范围。我们知道浮点数计算是不精确的。
0.1 + 0.2;
// 0.30000000000000004
0.1 + 0.2 - 0.3;
// 5.551115123125783e-17
(5.551115123125783e-17).toFixed(20);
// '0.00000000000000005551'
上面代码解释了,为什么比较 0.1 + 0.2
与 0.3
得到的结果是 false
。
0.1 + 0.2 === 0.3; // false
Number.EPSILON
可以用来设置“能够接受的误差范围”。比如,误差范围设为 2-50 (即 Number.EPSILON * Math.pow(2, 2)
),即如果两个浮点数的差小于这个值,我们就认为这两个浮点数相等。
5.551115123125783e-17 < Number.EPSILON * Math.pow(2, 2);
// true
因此,Number.EPSILON
的实质是一个可以接受的最小误差范围。
const withinErrorMargin = (left, right) =>
Math.abs(left - right) < Number.EPSILON * Math.pow(2, 2);
0.1 + 0.2 === 0.3; // false
withinErrorMargin(0.1 + 0.2, 0.3); // true
1.1 + 1.3 === 2.4; // false
withinErrorMargin(1.1 + 1.3, 2.4); // true
上面的代码为浮点数运算,部署了一个误差检查函数。
安全整数和 Number.isSafeInteger()
JavaScript 能够准确表示的整数范围在 -2^53
到 2^53
之间(不含两个端点),超过这个范围,无法精确表示这个值。
Math.pow(2, 53); // 9007199254740992
9007199254740992; // 9007199254740992
9007199254740993; // 9007199254740992
Math.pow(2, 53) === Math.pow(2, 53) + 1;
// true
上面代码中,超出 2 的 53 次方之后,一个数就不精确了。
ES6 引入了 Number.MAX_SAFE_INTEGER
和 Number.MIN_SAFE_INTEGER
这两个常量,用来表示这个范围的上下限。
Number.MAX_SAFE_INTEGER === Math.pow(2, 53) - 1;
// true
Number.MAX_SAFE_INTEGER === 9007199254740991;
// true
Number.MIN_SAFE_INTEGER === -Number.MAX_SAFE_INTEGER;
// true
Number.MIN_SAFE_INTEGER === -9007199254740991;
// true
上面代码中,可以看到 JavaScript 能够精确表示的极限。
Number.isSafeInteger()
则是用来判断一个整数是否落在这个范围之内。
Number.isSafeInteger("a"); // false
Number.isSafeInteger(null); // false
Number.isSafeInteger(NaN); // false
Number.isSafeInteger(Infinity); // false
Number.isSafeInteger(-Infinity); // false
Number.isSafeInteger(3); // true
Number.isSafeInteger(1.2); // false
Number.isSafeInteger(9007199254740990); // true
Number.isSafeInteger(9007199254740992); // false
Number.isSafeInteger(Number.MIN_SAFE_INTEGER - 1); // false
Number.isSafeInteger(Number.MIN_SAFE_INTEGER); // true
Number.isSafeInteger(Number.MAX_SAFE_INTEGER); // true
Number.isSafeInteger(Number.MAX_SAFE_INTEGER + 1); // false
这个函数的实现很简单,就是跟安全整数的两个边界值比较一下。
Number.isSafeInteger = (n) =>
typeof n === "number" &&
Math.round(n) === n &&
Number.MIN_SAFE_INTEGER <= n &&
n <= Number.MAX_SAFE_INTEGER;
实际使用这个函数时,需要注意。验证运算结果是否落在安全整数的范围内,不要只验证运算结果,而要同时验证参与运算的每个值。
Number.isSafeInteger(9007199254740993);
// false
Number.isSafeInteger(990);
// true
Number.isSafeInteger(9007199254740993 - 990);
// true
9007199254740993 - 990;
// 返回结果 9007199254740002
// 正确答案应该是 9007199254740003
上面代码中,9007199254740993
不是一个安全整数,但是 Number.isSafeInteger
会返回结果,显示计算结果是安全的。这是因为,这个数超出了精度范围,导致在计算机内部,以 9007199254740992
的形式储存。
9007199254740993 === 9007199254740992;
// true
所以,如果只验证运算结果是否为安全整数,很可能得到错误结果。下面的函数可以同时验证两个运算数和运算结果。
const trusty = (left, right, result) => {
if (
Number.isSafeInteger(left) &&
Number.isSafeInteger(right) &&
Number.isSafeInteger(result)
) {
return result;
}
throw new RangeError("Operation cannot be trusted!");
};
trusty(9007199254740993, 990, 9007199254740993 - 990);
// RangeError: Operation cannot be trusted!
trusty(1, 2, 3);
// 3
Math 对象的扩展
ES6 在 Math 对象上新增了 17 个与数学相关的方法。所有这些方法都是静态方法,只能在 Math 对象上调用。
Math.trunc()
Math.trunc
方法用于去除一个数的小数部分,返回整数部分。
Math.trunc(4.1); // 4
Math.trunc(4.9); // 4
Math.trunc(-4.1); // -4
Math.trunc(-4.9); // -4
Math.trunc(-0.1234); // -0
对于非数值,Math.trunc
内部使用 Number
方法将其先转为数值。
Math.trunc("123.456"); // 123
Math.trunc(true); //1
Math.trunc(false); // 0
Math.trunc(null); // 0
对于空值和无法截取整数的值,返回 NaN
。
Math.trunc(NaN); // NaN
Math.trunc("foo"); // NaN
Math.trunc(); // NaN
Math.trunc(undefined); // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.trunc =
Math.trunc ||
function (x) {
return x < 0 ? Math.ceil(x) : Math.floor(x);
};
Math.sign()
Math.sign
方法用来判断一个数到底是正数、负数、还是零。对于非数值,会先将其转换为数值。
它会返回五种值。
- 参数为正数,返回
+1
; - 参数为负数,返回
-1
; - 参数为 0,返回
0
; - 参数为-0,返回
-0
; - 其他值,返回
NaN
。
Math.sign(-5); // -1
Math.sign(5); // +1
Math.sign(0); // +0
Math.sign(-0); // -0
Math.sign(NaN); // NaN
如果参数是非数值,会自动转为数值。对于那些无法转为数值的值,会返回 NaN
。
Math.sign(""); // 0
Math.sign(true); // +1
Math.sign(false); // 0
Math.sign(null); // 0
Math.sign("9"); // +1
Math.sign("foo"); // NaN
Math.sign(); // NaN
Math.sign(undefined); // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.sign =
Math.sign ||
function (x) {
x = +x; // convert to a number
if (x === 0 || isNaN(x)) {
return x;
}
return x > 0 ? 1 : -1;
};
Math.cbrt()
Math.cbrt
方法用于计算一个数的立方根。
Math.cbrt(-1); // -1
Math.cbrt(0); // 0
Math.cbrt(1); // 1
Math.cbrt(2); // 1.2599210498948734
对于非数值,Math.cbrt
方法内部也是先使用 Number
方法将其转为数值。
Math.cbrt("8"); // 2
Math.cbrt("hello"); // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.cbrt =
Math.cbrt ||
function (x) {
var y = Math.pow(Math.abs(x), 1 / 3);
return x < 0 ? -y : y;
};
Math.clz32()
JavaScript 的整数使用 32 位二进制形式表示,Math.clz32
方法返回一个数的 32 位无符号整数形式有多少个前导 0。
Math.clz32(0); // 32
Math.clz32(1); // 31
Math.clz32(1000); // 22
Math.clz32(0b01000000000000000000000000000000); // 1
Math.clz32(0b00100000000000000000000000000000); // 2
上面代码中,0 的二进制形式全为 0,所以有 32 个前导 0;1 的二进制形式是 0b1
,只占 1 位,所以 32 位之中有 31 个前导 0;1000 的二进制形式是 0b1111101000
,一共有 10 位,所以 32 位之中有 22 个前导 0。
clz32
这个函数名就来自“count leading zero bits in 32-bit binary representation of a number”(计算一个数的 32 位二进制形式的前导 0 的个数)的缩写。
左移运算符(<<
)与 Math.clz32
方法直接相关。
Math.clz32(0); // 32
Math.clz32(1); // 31
Math.clz32(1 << 1); // 30
Math.clz32(1 << 2); // 29
Math.clz32(1 << 29); // 2
对于小数,Math.clz32
方法只考虑整数部分。
Math.clz32(3.2); // 30
Math.clz32(3.9); // 30
对于空值或其他类型的值,Math.clz32
方法会将它们先转为数值,然后再计算。
Math.clz32(); // 32
Math.clz32(NaN); // 32
Math.clz32(Infinity); // 32
Math.clz32(null); // 32
Math.clz32("foo"); // 32
Math.clz32([]); // 32
Math.clz32({}); // 32
Math.clz32(true); // 31
Math.imul()
Math.imul
方法返回两个数以 32 位带符号整数形式相乘的结果,返回的也是一个 32 位的带符号整数。
Math.imul(2, 4); // 8
Math.imul(-1, 8); // -8
Math.imul(-2, -2); // 4
如果只考虑最后 32 位,大多数情况下,Math.imul(a, b)
与 a * b
的结果是相同的,即该方法等同于 (a * b)|0
的效果(超过 32 位的部分溢出)。之所以需要部署这个方法,是因为 JavaScript 有精度限制,超过 2 的 53 次方的值无法精确表示。这就是说,对于那些很大的数的乘法,低位数值往往都是不精确的,Math.imul
方法可以返回正确的低位数值。
(0x7fffffff * 0x7fffffff) | 0; // 0
上面这个乘法算式,返回结果为 0。但是由于这两个二进制数的最低位都是 1,所以这个结果肯定是不正确的,因为根据二进制乘法,计算结果的二进制最低位应该也是 1。这个错误就是因为它们的乘积超过了 2 的 53 次方,JavaScript 无法保存额外的精度,就把低位的值都变成了 0。Math.imul
方法可以返回正确的值 1。
Math.imul(0x7fffffff, 0x7fffffff); // 1
Math.fround()
Math.fround
方法返回一个数的 32 位单精度浮点数形式。
对于 32 位单精度格式来说,数值精度是 24 个二进制位(1 位隐藏位与 23 位有效位),所以对于 -224 至 224 之间的整数(不含两个端点),返回结果与参数本身一致。
Math.fround(0); // 0
Math.fround(1); // 1
Math.fround(2 ** 24 - 1); // 16777215
如果参数的绝对值大于 224,返回的结果便开始丢失精度。
Math.fround(2 ** 24); // 16777216
Math.fround(2 ** 24 + 1); // 16777216
Math.fround
方法的主要作用,是将 64 位双精度浮点数转为 32 位单精度浮点数。如果小数的精度超过 24 个二进制位,返回值就会不同于原值,否则返回值不变(即与 64 位双精度值一致)。
// 未丢失有效精度
Math.fround(1.125); // 1.125
Math.fround(7.25); // 7.25
// 丢失精度
Math.fround(0.3); // 0.30000001192092896
Math.fround(0.7); // 0.699999988079071
Math.fround(1.0000000123); // 1
对于 NaN
和 Infinity
,此方法返回原值。对于其它类型的非数值,Math.fround
方法会先将其转为数值,再返回单精度浮点数。
Math.fround(NaN); // NaN
Math.fround(Infinity); // Infinity
Math.fround("5"); // 5
Math.fround(true); // 1
Math.fround(null); // 0
Math.fround([]); // 0
Math.fround({}); // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.fround =
Math.fround ||
function (x) {
return new Float32Array([x])[0];
};
Math.hypot()
Math.hypot
方法返回所有参数的平方和的平方根。
Math.hypot(3, 4); // 5
Math.hypot(3, 4, 5); // 7.0710678118654755
Math.hypot(); // 0
Math.hypot(NaN); // NaN
Math.hypot(3, 4, "foo"); // NaN
Math.hypot(3, 4, "5"); // 7.0710678118654755
Math.hypot(-3); // 3
上面代码中,32 加上 42,等于 52。
如果参数不是数值,Math.hypot
方法会将其转为数值。只要有一个参数无法转为数值,就会返回 NaN
。
对数方法
ES6 新增了 4 个对数相关方法。
Math.expm1()
Math.expm1(x)
返回 ex - 1,即Math.exp(x) - 1
。Math.expm1(-1); // -0.6321205588285577 Math.expm1(0); // 0 Math.expm1(1); // 1.718281828459045
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.expm1 = Math.expm1 || function (x) { return Math.exp(x) - 1; };
Math.log1p()
Math.log1p(x)
方法返回1 + x
的自然对数,即Math.log(1 + x)
。如果x
小于-1,返回NaN
。Math.log1p(1); // 0.6931471805599453 Math.log1p(0); // 0 Math.log1p(-1); // -Infinity Math.log1p(-2); // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.log1p = Math.log1p || function (x) { return Math.log(1 + x); };
Math.log10()
Math.log10(x)
返回以 10 为底的x
的对数。如果x
小于 0,则返回NaN
。Math.log10(2); // 0.3010299956639812 Math.log10(1); // 0 Math.log10(0); // -Infinity Math.log10(-2); // NaN Math.log10(100000); // 5
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.log10 = Math.log10 || function (x) { return Math.log(x) / Math.LN10; };
Math.log2()
Math.log2(x)
返回以 2 为底的x
的对数。如果x
小于 0,则返回NaN
。Math.log2(3); // 1.584962500721156 Math.log2(2); // 1 Math.log2(1); // 0 Math.log2(0); // -Infinity Math.log2(-2); // NaN Math.log2(1024); // 10 Math.log2(1 << 29); // 29
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.log2 = Math.log2 || function (x) { return Math.log(x) / Math.LN2; };
双曲函数方法
ES6 新增了 6 个双曲函数方法。
Math.sinh(x)
返回x
的双曲正弦(hyperbolic sine)Math.cosh(x)
返回x
的双曲余弦(hyperbolic cosine)Math.tanh(x)
返回x
的双曲正切(hyperbolic tangent)Math.asinh(x)
返回x
的反双曲正弦(inverse hyperbolic sine)Math.acosh(x)
返回x
的反双曲余弦(inverse hyperbolic cosine)Math.atanh(x)
返回x
的反双曲正切(inverse hyperbolic tangent)
指数运算符
ES2016 新增了一个指数运算符 (**
)。
2 ** 2; // 4
2 ** 3; // 8
这个运算符的一个特点是右结合,而不是常见的左结合。多个指数运算符连用时,是从最右边开始计算的。
// 相当于 2 ** (3 ** 2)
2 ** (3 ** 2);
// 512
上面代码中,首先计算的是第二个指数运算符,而不是第一个。
指数运算符可以与等号结合,形成一个新的赋值运算符 (**=
)。
let a = 1.5;
a **= 2;
// 等同于 a = a * a;
let b = 4;
b **= 3;
// 等同于 b = b * b * b;
注意,V8 引擎的指数运算符与 Math.pow
的实现不相同,对于特别大的运算结果,两者会有细微的差异。
Math.pow(99, 99);
// 3.697296376497263e+197
99 ** 99;
// 3.697296376497268e+197
上面代码中,两个运算结果的最后一位有效数字是有差异的。